

92ND ANNUAL MEETING & INTERNATIONAL SYMPOSIUM

ON DAMS FOR PEOPLE. WATER, ENVIRONMENT AND DEVELOPMENT

29TH SEP - 03RD OCT 2024 | NEW DELHI, INDIA

Risk Identification and Mitigation through Surveillance and Monitoring

Agim Lazareni MSc (Statkraft & ALBCOLD) – Albania, Guy Mason MEng CEng MICE (Statkraft GmbH) – Germany

Risk Informed Decision Making

Dam safety

Handbook Risk assessment and risk management for dams

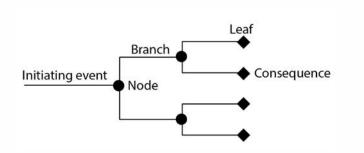
Syartevata Dam (Photo: Sira Kvini

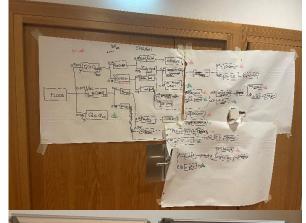
Dam Safety Risk Assessment Workshop, Tirana 2021

2. Overview of observations and earlier events

3. Brainstorming and screening of triggers and failure modes

5. Construction of event trees and estimates of probabilities

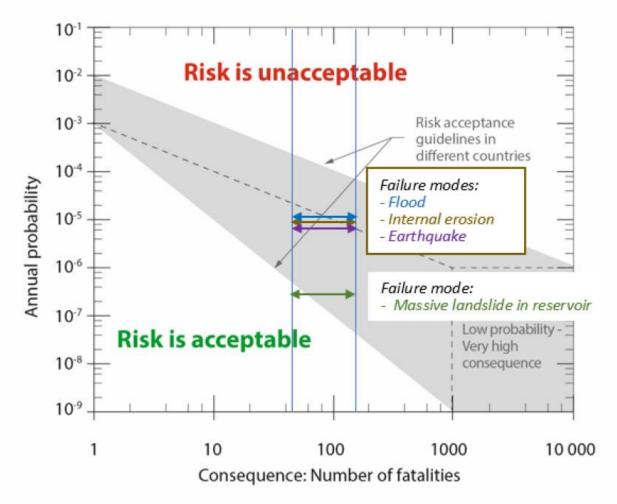

6. Calculation of probabilities for each scenario


7. Iteration of some or all event trees

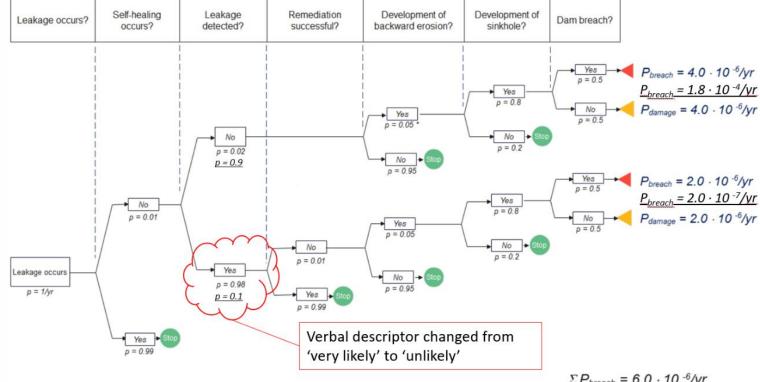
8. Calculation of total failure probability of dam

9. Evaluation of failure probabilities obtained and consequences

Probability	Verbal description
~0.0 – 0.5% (mean: 0.1%)	Virtually impossible, due to known physical conditions or process that can be described and specified with almost complete confidence
0.5 – 2% (mean: 1%)	Very unlikely, although the possibility cannot be ruled out on the basis of physical or other reasons
2 – 33% (mean: 10%)	Unlikely, but it could happen
33 – 67% (mean: 50%)	As likely as not (unknown) with no reason to believe that one possibility is more or less likely than the other
67 – 98% (mean: 90%)	Likely, but it may not happen
98 – 99.5% (mean: 99%)	Very likely, but not completely certain
99.5 – ~100% (mean: 99.9%)	Virtually certain, due to know physical conditions or process that can be described and specified with almost complete confidence



Trigger	Annual Failure Probability	
Earthquak e	8.6 x 10 ⁻⁶	
Flood	1.1 x 10 ⁻⁵	
Internal Erosion	8.0 x 10-6	
Landslide	2.3 x 10 ⁻⁷	
ERESENBRSU	lts for Moglice	Dam


- · Moglice dam is now into the fifth year of operation
- The initial phase of operations post impoundment was complete
- Opportunity to revisit how the dam safety program was delivered
 - · Structure of local team
 - Monitoring Instrumentation
 - Frequency of Measurements/Inspections

Event Tree Analysis for Risk Informed Decisions

Probability	Verbal description
~0.0 – 0.5% (mean: 0.1%)	Virtually impossible, due to known physical conditions or process that can be described and specified with almost complete confidence
0.5 – 2% (mean: 1%)	Very unlikely, although the possibility cannot be ruled out on the basis of physical or other reasons
2 - 33% (mean: 10%)	Unlikely, but it could happen
33 – 67% (mean: 50%)	As likely as not (unknown) with no reason to believe that one possibility is more or less likely than the other
67 – 98% (mean: 90%)	Likely, but it may not happen
98 – 99.5% (mean: 99%)	Very likely, but not completely certain
99.5 – ~100% (mean: 99.9%)	Virtually certain, due to know physical conditions or process that can be described and specified with almost complete confidence

 $\Sigma P_{breach} = 6.0 \cdot 10^{-6}/yr$ $\Sigma P_{breach} = 1.8 \cdot 10^{-4}/yr$

- Clear benefit to both management and O&M teams in compiling a comprehensive quantitative risk assessment for dam safety.
- At a local level, when delivering the surveillance and monitoring program a quantitative risk assessment provides useful information especially when resourcing the dam safety team and developing the inspection and measurement schedules.
- Risk assessments are live documents than can form part of the comprehensive dams and reservoirs documentation.

